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Following the introduction of a general method for constructing approximate invariant tori of
a given Hamiltonian H [M. Kaasalainen and J. J. Binney, Phys. Rev. Lett. 73, 2377 (1994)], it
is shown that the scheme can be applied to Hamiltonians with globally chaotic regions as well.
The created tori are proper in that (i) they are geometrically credible and fill chaotic regions in an
orderly way; (ii) their frequencies are consistent with those of the closed orbits of H; and (iii) for
short time periods, motion on them approximates motion in H. One of the examples is given in
a rotating frame of reference, with a Hamiltonian more complicated than the usual sum of kinetic

and potential energies.

PACS number(s): 05.45.+b, 03.20.+i, 95.10.Fh, 98.10.+2z

The computation of the invariant phase-space tori of
Hamiltonian systems is an important problem in several
fields (see Ref. [1] and references therein). Recently [1-4],
techniques have been developed for nonperturbatively de-
termining a canonical transformation that maps the in-
variant tori of an integrable “toy” Hamiltonian Hr into
approximately invariant tori of a given “target” Hamilto-
nian H; the transformation between the ordinary phase-
space coordinates w = (p,x) and the action-angle co-
ordinates (J,0) of Hr is known. With the methods of
Refs. [1-3], it is possible to construct invariant tori of
a given type also in regions of phase space where there
are no invariant tori of H of that type. Such regions are
filled in an orderly way by the constructed tori; these
can be seen as invariant tori of an integrable Hamilto-
nian Hy that closely approximates H, and shares with H
whatever invariant tori H may possess [1,5].

The examples of Refs. [1-6] concern regions of regu-
lar or locally stochastic motion; the latter is seen in a
Poincaré surface of section as the stochastic layer around
a separatrix bounding an island. In globally chaotic re-
gions, stochasticity is no longer contained in such layers.
It is desirable for the construction methods to be applica-
ble also to Hamiltonians H producing such regions. One
can view such an H as a large perturbation of an inte-
grable Hy: as the perturbation is increased, fewer and
fewer invariant (KAM) tori survive, and finally they all
disappear. Thus, in determining an Hy by interpolation
between the constructed tori [1,5], one cannot usually
employ KAM-tori of H alone, but necessarily has to con-
struct tori of Hy directly in the chaotic regions.

In the following, tori are constructed with the gener-
ating function approach described in Ref. [1]; the toy
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Hamiltonian Ht is the two-dimensional harmonic oscil-
lator, because its orbits are topologically similar to the
so-called “box” orbits that are of interest here. Tori are
described by the action-angle variables and the frequen-
cies w; we employ the convention that unprimed J, 0, w
relate to the tori of Hy, while the primed ones correspond
to those of Hy. We seek a generating function S(6,J’) of
the form

$(6,3')=0-3' —iy " Sq(J') exp(in- 6), (1)
n#0

that maps the tori of Hy into those of Hy. The toy and
target actions and angles are related by

J =085(0,3)/86, 6 = 85(6,3')/83". (2)

The Levenberg-Marquardt (nonlinear least-squares opti-
mization) algorithm is used to find the coefficients Sy
that minimize the variation of H over the trial torus of
given J'.

As in Ref. [1], the examples here concern motion in the
logarithmic potential

1 2
®(z,9) = 5In (s + 75 + RY), (3)

where R. = 0.14 and q is varied in the range (0, 1]. This
represents a nonaxisymmetric planar gravitational poten-
tial, such as that of an elongated galaxy [7].

Motion in the unadorned potential (3) is known to be
very regular: when the parameter ¢ is made smaller, more
and more resonant islands appear, but stochasticity is
always contained in local layers, never spreading to larger

1193 ©1995 The American Physical Society



1194

regions of phase space. One way of creating increased
stochasticity is to add an irregularity term to (3), as in
Ref. [7]:
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where r = /22 + y2, and s is an additional parameter. It
should be noted that, by rescaling = and y, the potential
(4) can be rewritten as one governed by one parameter
appearing in a constant term as R, in (3), without us-
ing two parameters s and R.. The parameter s is used
here merely to show how large the contribution of the
irregularity term is, as compared to (3), when R, is kept
fixed.

Let us perturb the regular motion presented in Fig. 1
of Ref. [1] by setting s = 3.5 at ¢ = 0.8 and H = —0.199,
and construct tori for the major family of “box” orbits.
The corresponding (x, &) section is shown in Fig. 1. Box
orbits are now globally chaotic except for the islands of
stability associated with the resonances 1:2 (the outer-
most island), 2:3, and some others. Nevertheless, the
constructed tori retain the same form as in the regular
case. The least-squares method is thus able to construct
good tori even in a wide chaotic region. Moreover, the
ratios w] /w} of the frequencies assigned to the uppermost
two tori bound 2/3 on both sides: one can treat the is-
lands of the minor-orbit family as caused by a perturbed
2:3 resonance of a constructed Hp, as in Ref. [1]. The
lower pair bounds a 3:4 resonance: the corresponding is-
lands have practically drowned in the stochastic sea, but
the curves still “remember” how the islands were located
in the case of a smaller irregularity term. The method
of determining the frequencies w’ and angle coordinates
@’ for a single constructed torus incorporates the prin-
ciple of linear time development of the angles along a
trajectory on an invariant torus [1]:

0 =06, + w't. (5)

If the created torus approximates an existing invariant

FIG. 1. (z,z) section for the modified logarithmic poten-
tial (4) with ¢ = 0.8 and s = 3.5 at H = —0.199. Dots are
integrated consequents, and the solid lines are curves of nu-
merically constructed tori. For clarity, the islands of stability
have been left empty.
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torus of H, the motion (5) on the torus will approximate
the time development of a phase space trajectory w(t)
given by H. If the torus is constructed in a resonant
or stochastic region of H, one is free to define how (5)
projects into w(t): the method of Ref. [1] assigns credible
frequencies and angles to such a torus.

Another very interesting way of creating global
stochasticity is to set (3) to rotate with an angular ve-
locity @ = Q2z, where z is the z-axis unit vector, and
study the Hamiltonian in the rotating frame of reference.
Astrophysically this is of interest, because from obser-
vations it is known that the potential figures of galaxies
typically rotate.

First, let us write the Hamiltonian in a rotating frame
of reference. This can be done by using a time-dependent
canonical transformation between the inertial and the ro-
tating frame. The canonical variables in the rotating
frame are denoted by (p,x) and those in the inertial
frame by (p’,x’). Now

x'(x,t) = xcos Qt + z X xsin Q. (6)

[In the three-dimensional case, (6) holds for z and y co-
ordinates; z and p, are, of course, invariant.] This trans-
formation can be generated by the function F(p/,x,t) =
p’ - x'(x,t); from 8F/8p’ we have (6), and p = 9F/dx.
The Hamiltonian H in the rotating frame follows from
the inertial Hamiltonian H' by

H=H'———8—F—=lp2+ﬂ-(pxx)+¢(x). (7
ot 2
The cross (Coriolis) term makes this Hamiltonian asym-
metric under time reversal. Also, the canonically conju-
gate momenta p are no longer just the Cartesian coordi-
nate velocities as in the inertial space; from the Hamil-
tonian equations of motion we have

k:gzp——ﬂxx. (8)

The Newtonian equations of motion can be obtained by
taking the time derivative of (8) and combining that with
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FIG. 2. (z, &) for the Hamiltonian (7) at H = —0.315 with
g = 0.9 and © = 0.3. The orbit families z;—z4 (z3 at an
unstable point) are marked.
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p=—-0H/ox:

. 0% .
x———g;—Z(ﬂxx), (9)

where the effective potential ®.¢ is
1
O =% — 5Qz(ac2 + 9?). (10)

The value of the Hamiltonian (7) is called the Jacobi
constant Ej, which can also be written in terms of the
Cartesian noncanonical variables as Ey = %|x|2 + Pg.

As is well known [7], rotating barred potentials pro-
duce four kinds of major families: loop orbits around
stable closed ones, usually labelled z;, z2, and z4 (z3
corresponds to an unstable orbit), plus the box orbits.
Figure 2 shows the (z, &) section of the logarithmic po-
tential with ¢ = 0.9 at H = —0.315 and rotation speed
Q = 0.3. (At y = 0, the momentum p; coincides with
z.) The loop orbit families are quite regular and not
very interesting in this context, whereas among the boxes
one will find large regions of stochasticity as the rotation
speed is increased. As previously, the boxes can be han-
dled with the harmonic oscillator as the toy Hamiltonian.
Previously, the target action values for the sets of major-
type tori could be arranged to join smoothly in a natural
way in the action space; now, the corresponding action
patches overlap and leave gaps [8]. Thus, if one creates
an integrable Hamiltonian from the constructed tori, it
applies to each major family separately.

In the time-symmetric case, the imaginary parts of the
Fourier coefficients of the generating function S, as given
in (1), vanish; geometric symmetries affect some more
coefficients [2,3]. In the time-asymmetric case, the struc-
ture of the Fourier series can be deduced, e.g., from the
general shapes of the invariant curves in surfaces of sec-
tion. For the box orbits in the present case, one finds
that (denoting the real and imaginary parts of the coeffi-
cients S, by superscripts R and I) S contains only terms
SE with both indices of n even (as in the nonrotating
case), and terms SZ with both indices of n odd.

In Fig. 3 the (z,) section at H = —0.253, ¢ = 0.8,
and ©Q = 0.4 is shown. The z; family has now vanished.
The solid lines are the invariant curves of constructed
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FIG. 3. (z,%) at H = —0.253 with ¢ = 0.8 and Q = 0.4.

The solid curves are those of constructed tori.
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FIG. 4. (a) Trajectories in toy angle 8 space obtained by di-
rect integration of the equations of motion from several start-
ing points on the middle torus of Fig. 3. (b) The same tra-
jectories in target angle @’ space (dots), together with the
semianalytical linear trajectories (5) (straight lines).

box-type tori. In this case, the box orbits are almost
rectangular in configuration space, so an additional point
transformation [1] is not used. In the Fourier series for
S, the coefficients SF and S. decrease in n in a regular
manner — the number of coefficients is about two times
that needed for time-symmetric Hamiltonians. The need
for many SI is obvious from the asymmetry of the surface
of section with respect to the momentum axis.

The tori constructed in the chaotic region are again
perfectly credible. Note how the curves of the con-
structed tori mimic well the behavior of the invariant
curves that “used to” lie in the now chaotic region before
the fast rotation dissolved them (cf. Fig. 2). The assign-
ing of the target angles and frequencies is illustrated in
Fig. 4 (compare with Fig. 3 of Ref. [1]). Note that even
though the motion on the integrated strips certainly does
not occur on a torus, and cannot thus coincide with a lin-
ear increase in the created target angles, the linear strips
in Fig. 4(b), corresponding to the middle torus of Fig. 3,
are still very close to target angle points corresponding
to the integrated strips. Thus, for short time periods,
motion on the constructed torus approximates motion in
H as well as possible because of (i) the way the torus
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is fitted in phase space, and (ii) the way the angles and
frequencies are determined.

An interesting thing about the chaotic region is that
it stops very sharply at the outer edge of the large 5:7
islands seen in Fig. 3. A series of invariant curves starts
immediately after the islands, going then over to the sep-
arate region of the z; family. Eventually, the insides of
boxes break up because of the Coriolis effect, and the
loop-type z; orbits are formed. These cannot be mapped
as boxes with the harmonic oscillator any more, because
they leave a gap around the origin in configuration space.
Accordingly, the boundary of a box orbit close to the z;
family is roughly rectangular all right, but motion inside
it is different from that of the harmonic oscillator. Con-
sequently, the Fourier series for the generating function
S becomes quite long. In this case, the tori produced by
the least-squares method (with computationally reason-
able resolution and number of coefficients) do not coin-
cide accurately with the invariant curves between the 5:7-
islands and the z; family. However, the orbit integration
method can be employed to improve the accuracy [4,1].
Now one can obtain a perfect fit to the integrated conse-
quents, as can be seen from the outermost solid curve in
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Fig. 3.

The above example illustrates the useful complemen-
tary nature of the two torus-construction techniques.
The orbit integration method is very useful for obtaining
accurate approximations to the existing invariant tori of
H, especially in difficult cases when the number of signif-
icant coefficients in the series for S is large. In the above
case, one could also have used the harmonic oscillator
in a rotating frame of reference as the toy Hamiltonian
Hr for the difficult boxes (for its actions and angles see
Ref. [9]); however, the methods at our disposal work well
with the ordinary harmonic oscillator as well.

The examples in this paper demonstrate the general
applicability of the torus-construction scheme of Ref. [1]:
“artificial” tori can be created even for Hamiltonians that
possess very few invariant tori of their own. Especially
when constructing an integrable Hamiltonian H, close
to a given nonintegrable one, H, it is possible to create
tori on a grid in action space without having to worry
about stochastic regions. Having such an Hy at one’s
disposal should make it possible to, for example, apply
perturbation theory in studying the onset of chaos and
phenomena occurring near and between resonances.
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